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50 DR. J. W. NICHOLSON ON OBLATE SPHEROIDAL

Part I.
§1. Introductory.

TurE harmonic functions appropriate to the oblate spheroid, which are of the form
P, (0), ¢, (%), or P, (%), Q, (L), when the large letters denote the usual Legendre
functions, have received but little attention.* Yet they provide, as we shall show in
this memoir, a very elegant analysis of a variety of physical problems. We propose
to exhibit a series of illustrations of their use, together with a large body of analysis
whose applications extend very far, and lead to elegant solutions, in an analytical form,
of problems which are in many cases new. In other cases—for example, the classical
problems of electrified circular discs under influence—--geometrical methods which lead
to serious limitations have alone been effective hitherto. The analysis by spheroidal
harmonics is shown to be intimately associated with that by other methods, such as
the Fourier-Bessel integral method, and important theorems of analysis are involved.

We may begin with a brief summary of the more important expressions already
known for these functions.t If a potential function ¢ satisfies

Vip =0
and a transformation to cylindrical coordinates (z, ¢, ») is made,
¢, 10¢ a¢ 1 0% _
892\+p o¢ T 28w2-0’

where o is distance from the axis.
If we now take new co-ordinates (¢, ¢, ©) defined by

z = apt, x = av/(1—p2) (14+22) cos o, y = ar/(1—p2) (14-22) sin o,
the surfaces u = constant are the confocal hyperboloids of one sheet

92 z2
al (1 — ”2) “2“2 =

)

and the surfaces £ = constant are the (oblate) spheroids

2 02 N
P (R

while o == constant gives planes. (u, %, ©) are a set of orthogonal co-ordinates, and if
38, 35;, 3s, are the space elements at any point,

2 2\ 3 3
8s, = a( pitt > S, 8, = a <M +8%\ s 52, 8s, = a (1—p?)t (1-4+-22)80;

* The well-known paper of C. Niven, ‘ Phil. Trans.,’ 1886, is an outstanding exception, but has little in
common with this memoir.

T For a fuller account, vide Lawms, ¢ Hydrodynamics,” Camb. Univ. Press.
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HARMONICS AND THEIR APPLICATIONS. 51

while LaPLACE’S equation is reducible to

%{(1—@) 2—3} +5%{(1+C2) %%} - <14it;2_1_:1‘@> S—Z‘)’%

or zero, in the case of symmetry, in which a solution is given by

p= 3P, () {ap, (O +b,0 (). - - . (1)

a, and b, being any arbitrary constants, P, (x) the ordinary zonal harmonic of degree n

—it is understood that u ranges only between +1, whereas { can range from 0 to «, or
occasionally — o to co—and p, (¢) is

P, (8) = 7P, (iX)

_ @) [ n(n—1) v, n(—=1)(n—2) (n—3) yues
_2"(n!)2{c+2.2n~1c +g.4(2n—1)(2n——3)c +} " (2_)

being finite at { = 0 and infinite at infinity, » being an integer.
The second function g, (¢) is similarly related to Q, (:¢), and admits the formulse

” dg
.0 =20 | o

— (=P {pa @) cot = 2L g (@) + EE ()

.(n—1)
:M{l ) (42 1 ) (n42) (n+3) (nta) 1 }
nT 1T+ 2. (2nt38)

2.4 (2n+38)(2n+5)

(3)

+

Gif > 1).

This function is zero at infinity.

The special spheroid { = 0 is a circular disc z = 0, 22 = 2, and the hyperboloid
w =0 is the remainder of the plane z = 0. These results are all well known. The
stream function of a fluid motion given by (1), as velocity potential, becomes

— i 2 & 1 dPn dpn(c) dQn(c)]~
b=all—e) (e )§7%(n+1) du {“" A

In terms of these co-ordinates, for example, the motion of an oblate spheroid with
velocity U along its axis through an infinite liquid is given by*

¢. = ——anJ« (1—_C cot™!? C)/< Co —cot—! C0>,

C2+1
¢ = —1a2U (1—p?) (1-+¢?) {1—5{2 —cot ™! C}/(———I_E"C S —cot ™! §o>,
\ 0

where { = ¢, is the equation of the spheroid.

* Laums, ‘ Hydrodynamics’ (1906), p. 137.
H 2
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52 DR. J. W, NICHOLSON ON OBLATE SPHEROIDAL

For the circular disc, ¢, = 0,

2U

:———-ua(l ¢ cot™ {) = 2U“

— Py (1) ¢, (%)

b =Y )(1+:2){ —cot-lc}.

1+

The first is identical with the well-known integral solution (z > 0}*

2U (., d sin Aq
TL Jo (e )dx X -,

(]1).:___

and the second with

¢ *® A
“I’:égpf T, (h )dsm L

for it is readily seen from the relation between ¢ and ¢ that any fluid motion
defined by

s = T, 00) £ (1) a1

possesses the stream function

b=—p[ 0,00) () D

The motion of a liquid through a circular aperture of radius @ in an infinite plane
screen is given by

¢ = Ua cot™! {, LIJ = Ua?u,

where U is the central velocity. These expressions are also replaced readily by cor-
responding definite integrals.

§2. Further Properties of the Harmonic Functions.

The following properties of the functions are known or at once obtainable, but it is
convenient to have them grouped together here for future reference :-—

(MUMMQxﬁwU%ﬂHWHM} “
4
(n+1) q::+l (C) = nq"——l (C) - (2'”'—"[“1) cq:: (Z)
there being a difference of sign in the two cases.
_z?_ dp,. s (9 dp, _n(nt1) 1
+ (2=1) oy (148) T2 == 2 (Pt pana) |
[} oo (9)

i@+@hﬁrw%mnmhu+vﬂ% —et ) g, )

dg dg 2n+1

* Lawms, loc. cit.
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HARMONICS AND THEIR APPLICATIONS. 53

again with a similar difference. Moreover, these relations at once lead, when the

argument 1s zero, to

Pons1 (0) = 0, pg,,(o)zzgf(’;):)g. N ()

Also
¢ (L) =cot ¢ q(¢)=1—Ccot ¥ q,(¢)=23(884+1)cot™® {—3L.
And since by (4)
(7L+1) q,n+l (0) = ngn—l (0):
we readily find

_ (@2n)! = _ 27 (nl)?

Q2ﬂ(0)“m'§7 Q'2n+1(0)—(-27b+—1!) e e e (7)
From the other set of recurrence formule, after a little reduction,
EZZ_’QLL — APgnir _ (2n+1)!
<dz )0 0 ( ), e ®
(o) 2Dt (dge) @1 )
dt /o (2n)! ’ dg )0 2% (n1)2°2°

§3. The Three-Dimensional Source of Fluid on the Awis of a Circular Obstacle.

The theory of sources and sinks in fluid, investigated in great detail in two dimensions,
has hitherto made no progress in three. The only problem for which an exact analytical
solution has been obtained is that of a source in presence of a sphere, where it is well
known that the image system consists of a source at the inverse point, together with
a line sink. This result can be proved directly by the use of zonal harmonics, and the
pressure of the source on the sphere can be determined precisely as a very simple
function. ,

No other problem, as stated, has been similarly solved exactly, though it is not
difficult in some cases to proceed by successive approximations which, however, have
never suggested the exact expression.

Our present purpose is to obtain the exact expression appropriate to the case of a
source on the axis of an oblate spheroidal obstacle, by the use of the spheroidal harmonic
functions whose accepted theory is summarised in the last sections. It is somewhat
remarkable that the problem has not been solved before, although the necessary
properties of the various transcendental functions involved, more especially in relation
to reductions which can be made for the circular disc, are very intricate, and have been
little studied by investigators except from rather restricted and isolated points of view
which do not bear on a problem of this nature. The attractive nature of the analysis
bearing on the mutual relations of spheroidal, as distinct from spherical, Harmonics
and the Bessel functions has never been developed in detail.

Some of the results of pure analysis relevant in this connection are foreshadowed
by many formule of SCHAFHEITLIN, in which spherical harmonics are mainly concerned.
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54 DR. J. W. NICHOLSON ON OBLATE SPHEROIDAL

ScHAFHEITLIN developed his formule of connection between Legendre and Bessel
functions for their mathematical interest, and they do not appear hitherto to have been
applied to any physical problem, or even to have arisen in connection with any. It
may be stated, in fact, that they are isolated parts of a very general scheme of relation
of Bessel functions to spherical and spheroidal harmonics which would be worthy of
further developments on its purely mathematical side. In addition to SCHAFHEITLIN,
it is only necessary to refer to WurrTaker* and MacponaLp,f who have obtained
formulee which are in a sense converse to previously known relations, but again without
indication of their physical applications or connection with problems of spheroidal
harmonics. -

The typical ScHAFHEITLIN formula,] which will serve to indicate the kind of relation
under notice, is—for all positive integral values of n (zero included)—

: Py, (1) = (—) <§2§> L Jonss () cos px .z~ dx,
where p <1.

§4. The Inverse Distance Formula.

Let R be the distance between the point (0, 0, —c) on the axis of z, and the variable
point (z, y, 2), or R? = a2-|-42 - (z-}-c)? = p*--(2-4¢)%.

Then
1 f ]- ” —Az+ec
R M1%92+(z+c)2} = L e+ J (hp) dh

when z--¢ is positive. Writing, in the oblate spheroidal co-ordinates (¢, ¢, ),

: z=apl, x=a(1—p)(1+L)cos 0, y=a(1—p2)} (1) sin o,
then ‘
Ll e @ e >—
= (et G et
= [ e, fha (1) (1 1)) .

We can therefore express R-1 in a series of spheroidal harmonics if the function

e, D/ (1—03) (14 0)}

can be so expressed. As regards the appropriate expression, the following considerations
may be noticed :-—

The whole fluid potential in the case of the source and a spheroidal obstacle £ = ¢,
consists of (1) a term ¢ due to the source, and (2) a disturbance ¢’ due to the obstacle,

* ¢ Proc. Lond. Math. Soc.,” vol. 35 (1903), pp. 198-206.
T MacpoNALD, bid., pp. 428-443.
1 WHITTAKER, loc. cit.
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HARMONICS AND THEIR APPLICATIONS. 55
and vanishing at infinity, therefore requiring the functions g, () but not p, () in its
expression. This disturbance must in fact be of the type

¥ = 3 0P, ()g(0)
where b, depends only on ¢ and @. The spheroid is defined by the relation
‘ z2 \ 2

P TR EEQ)

The condition at the obstacle is, when ¢ = ¢,

= 1.

0
sz (9t¢) =0
so that ¢ must be expressed in the form
#= Z 0P, (), (0)

near the obstacle. If the source is of unit strength, ¢ == R-!, which contains ¢/a in
the same manner as ¢, =0 that ¢ is also a harmonic series in ¢/, and admits the
expression

b = 2 a4, { pu(cfa)+a,g, (cfa)} P, () p(0).

But ¢ must vanish when ¢ is infinite, and therefore p, (c¢/a) is absent, so that

@

$= !- Za Xnn C/Ol/ pn (C) R (10)
a o

where «, is constant as regards (cfa, p, ¢), is the necessary form of expression, if
convergent.  This convergency obviously requires { <cfa. If {>c¢/a, its appropriate
continuation is

p=1Zap ()P, @Wa.©. . . . . . .. (1)

for the same value of @,. These formule are continuous when ¢ = c¢/a.

This simple argument is, on physical grounds, sufficient to prove the validity of these
two forms of development of 4. It does not, however, readily lead to a determination
of the constant @,, which will now be found by a different process.

Bauger* has given the following formula :—

eteentdy (ke sin o) = «/ sz (2n-F1) . Ty (kr) P, (cos 0) P, (cos ) . (12)
0

where 2z = 7 cos 0, p =7 sin 0.

* ¢ Miinchener{Sitzungsber.,” V. (1875), p. 263.
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56 DR. J. W. NICHOLSON ON OBLATE SPHEROIDAL

We can take this as our starting point, for it remains true, so long as the series does
not diverge, when complex values are inserted for some of the variables. It can be
proved directly in such circumstances, but we think it unnecessary to include this proof,
which would lengthen the present investigation unduly.

Let kr = Aa, cos O = p, cos « = &, which are mere changes of notation for real
variables, and ' ' ‘

e Jo {a/T=0) (1=8} = A/ 5= B on . (2041) T, (ha) P, () Py (B).
Write now
Lg = —"Cy or \i = LC:
and -
——————————————————————— i e "
e, {ra/(1—p?) (1+8%)} = «/ g = v (2n-1) ., (Aa) P, (1) . vp, (),

this series being still absolutely convergent for a small enough value of ¢, say ¢,. Its
actual magnitude is not relevant, and it is sufficient to notice that it is not less than
unity. Thus, if £ <, |

3,00) = A/ T E (< @) d,,, 00) P, () (2),

20 o

and we may write, under the same circumstances, integration term by term being
valid,
— l‘ .e—)\(z+c)J0 (7\9) d)\

0

N

L
R

o Ms

(=1 @nF D) P () p, (0 | e Ty Gepobdr, . (13)

Sl

§5. The Value of a Definite Integral.
HANKEL, in his posthumous paper,* proved the formula

(Ja)+t.n! F<n—l—1 nt2 g _90_2>
T (n+3) v

joe—)\c']-n+§ ()\a’) At = 9 ' 9 .

in the notation of hypergeometric functions, when # is an integer. This function can
be recognised at once as proportional to our function g, (¢/a). In fact, the formula may
be written as '

qn<§>=<’;—“>*j:e—wm(m)x=ldx, Ly

and is proved by direct expansion of the Bessel function, if ¢>a. The resulting
hypergeometric function is then a convergent series.

* ¢ Math. Ann.,” VIII (1875), pp. 4563-470,
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HARMONICS AND THEIR APPLICATIONS. 57

It is more difficult to prove the formula when ¢ <a, but it remains true, and can be
proved by the development of a recurrence formula. For if the integral is denoted
by I,, we can show that ’

(n-+1) I,y = 0L, ,—(2n+1) 2T,

which is identical with the relation between the corresponding ¢-functions.

§6. Further Development of the Inverse Distance Formula.
We quote, in the inverse distance formula (13), the formula (14), and find

1 1

E:Jm=—01~6%(“)"-(2n+1)qn(clw)Pn(M)pn(C), - (15)

where @ is arbitrary, and (a, p, {) are the definition of a set of oblate spheroidal co-
ordinates including, as one of the spheroids for which ¢ is constant, the circular disc

=0, p == ¢, which corresponds to { = 0, the rest of the plane z = 0 corresponding
to n = 0.

The formula is closely related to one glven by DouveaLw,* but developed In a very
different manner. The reader should refer to this.

Important properties of spheroidal harmonics are inherent in this expansion. For
example, if ¢ = ax, where  can have any real magnitude, then, since

S S SRR N -4
o a{l w2 - ? - 2pal 4,

we have on multiplication by P, (1) and integration,

L P, (u)ds
P (%) g, (2) 5 J-u/1~u”+c2+x2+2uxz’ N ¢ 1))

provided that € is less than . If T is greater than x, ¢, () p, (%) is expressed by the
same integral.
The formula

I

CMS

1
a

(=) (2n+1) g, (c/a) P, () p, (¥)

=v/

is only absolutely convergent if <>¢. When% < ¢, it is to be replaced b
y y g p p p y

o Ms

(=) @n41) p,(fa) P, () gu (©)- + + o . (A7)

[
R =

* ¢ Proc. Edin. Math. Soc.,” vol. XXXVII (1919), pp. 33-47.
VOL. CCXXIV.—A, I
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58 DR. J. W. NICHOLSON ON OBLATE SPHEROIDAL

It does not seem necessary after the analogy which is evident between these formule
and those of zonal harmonics as used for a source in presence of a sphere, to give further
proof of this statement.

§7. Source in the Presence of a Spheroid ¢ = €,

In the figure, O is the origin of co-ordinates, and the semiaxes of the spheroid are
0OA, OB, of lengths a%,, @ +/(14-¢2).
The length OP is c.
The critical case of convergency in the preceding

B
P w A formula, specified by o= ¢, occurs on the spheroid if

¢=af, If Pisaninternal point, % <¢,,and the formula

above is used for the development of R-1, the disturbance introduced by the spheroid
on the liquid inside being of type

’

(/):

ISR
OMS

where K, depends only on n. When P is an external point, the source of unit
strength produces an effect, close to the boundary of the spheroid, given by

# =32 (=) @n+1) g,(c/a) P, (), (2),
and the spheroid produces

P13

¥ =13 (=) K, @) g, (/o) P, () g, (),
vanishing at infinity.
Making
o ’ _
[ =0

we find

K, = —p', (2)/q. (%)

and the effect of the spheroid, from which any possible image system must be
deduced, is

(F g/ P e @F) s

o M8

1
, = — —
¢ a
We have not been able to deduce any image system. In fact, apart from the merit
of being exact, the formula is not too advantageous. It can, however, readily give useful
approximations in such cases as ¢/a very small or very large. We do not propose to
discuss such approximations in the present paper.
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HARMONICS AND THEIR APPLICATIONS. 59

§8. Source in Front of a Circular Disc.
When the spheroid becomes a circular disc of radius @, we have { = ¢, = 0, while

2 ) .
wo= /\/ <1~— —p—2> where ¢ is the distance of any point of the disc from its axis. Recalling
a,

the derivates of the functions of zero argument, we find on substitution that the motion
due to the disc-shaped obstacle is

(f>’ = (4n+3) Qons1 (C/OL) P2n+1 () Qoni1 .. . . .. (19)

'

@lw
OMQ

containing only the alternate harmonics. We note that ¢’ vanishes with u, or over
the rest of the plane z == 0 outside the dise. This was to be expected.

The simplicity of this formula and especially the elegance of the result obtained
through the disappearance of the awkward denominator ¢/, (¢,), leads at once to the

hope that this series may be summed.

§9. Some Integral and other Properties of the Spherovdal Harmonics.

It is well known that if m is a positive integer, and 7 is not a real quantity between
-+1 and —1, the formula
1P, (x)
o) —— 2]* m OZ’ ‘
Q) =4[ =
is true universally. This has an immediate application to our present object. Writing
z = ¢, where { 18 real,

g, (0) = 4| T2t ) do

Let m be odd, and equal to 2n4-1, where » is a positive integer, then

—) L ‘ ” ‘1P 2) d:
qzn+1(2)=(—§-)-j_lf-13§;—;ljr(—%icz(—)njo?-—i%i%i”-,. TN

the imaginary part being zero by inspection.
Writing, otherwise, m == 2n,
0 — (i [ Pu@ g
au (@) = (1| et de,

whence
— n§ " P2n(m) — 2 \n 1P2n(w) da/‘ :)0
G (@)= ()| e =(-) CL“‘W L. (20
These formule are very useful, as will appear. - The last one fails when £ = 0.
Consider now a well-known formula, with (A, ., ») all real,

Pt {(1=3%) (1=} cos 0) = P, () Py(w)+2 £ LR n() P(e) cos mo.

12
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60 DR. J. W. NICHOLSON ON OBLATE SPHEROIDAL

If we integrate it with regard to o as it stands, from zero to =, as in the ordinary
determination of Fourier coefficients, for this is a Fourier series, we find

=P, () ,(0) = || B Ot {19 (1)} cos o) do,

or if At {(1—22) (1—p2)} cos © = ¢,

[ P, (¢)dt

"R (1) Pulw) =| S e (21)

on reduction, where the integral is taken over all values of ¢, between +1, which make
the square root real. '
Now the series, where f (f) has a very general character,

= M8

1
ben )20 [ P
converges to f(f) at all points of continuity, and to

3 {/(t—0)+f(+0)

at points of discontinuity.
Suppose now that we define our function f(¢) by the relations

£(8) = (1—22—p?—?F-2npt)

£ty =0

when the square root is not real, the quantities (A, ¢) being themselves all real.
Then by (21), we obtain at once, all conditions above being evidently true,

when real,

F(t) =

oM8

% 2n+1) P, ()P, (1) P, (»),

a convergent development, of necessity.
The fact that, when it is real

(A—n—pr—pfut)* =3 (20 )PP )P0 . . . . (22)

o Ms

ki
2
is evidently an analogue of our inverse distance formula. It is the fundamental

formula proved by DouGArw.*
By attaching a negative sign to any one of the variables, the companion formula

(1—22—p2—2—2npt)~t = = X (—)"(2n-+1) P,(2) P,(v) P,(2)

cMg

T
2
is obtained at once.

* Loc. cit.


http://rsta.royalsocietypublishing.org/

A

\

A\

A
A \

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

)

a
fa \
A A

y i
Y 4

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

HARMONICS AND THEIR APPLICATIONS. 61

Writing, as a completely symmetrical form in the variables,

SO u, ) = (1—A2—p2—2-2nut)~  if real,

= (0 otherwise,
we find

FO, o t)—=f(, —p, t) ==

o Ms

(474-8) Py (M) Popy (0) Popn 1) .. (23)

resembling the series at the end of the last section, whose sum is required.
We shall also require, for future work, certain other properties of the spheroidal
functions ¢,(¢). In the first place, following the lines of the usual proof, that, when

lw| <1,

@ N _ ey 2\~ -1 h—*M }
5 17Qu (1) = (1—2hut-42) cosh {(u2—~1)%

in the case of the Legendre function of the second kind, we can show,—it being thought
unnecessary to give a proof in detail,—that

1
(12—

C—k
V()

the series being convergent over a wide range of £ or {. By differentiation with regard
to £,

(24)

5 krq,(C) = , cos™!
0

_ 1  k(Z—k) o1 ok
1+25C—k  (1+2kC—Fk2)": (122’

Sk 4,(%)

changing the sign of £ and subtracting,

5 : A% (1—72) 142 L =k
E J2n+1 — ‘
PR GO = e T e )
IENCT N et
(1—2kC—k?)'" (1422’
and writing now £ == 7, we obtain the curious result
1 il .
1re¢ %( ) (4n+38) ga,41(8) (25)

which will be very useful. This series is absolutely convergent.
Let us now return to the preceding general theorem of DovGALL, in the form

g§ (2n+1) P,(2) P, (1) P, () = (1—22—p2—az>4-220px)~*  or zero,
0

where the first value of x, between 41, is also between the values making the square

root real, which are
@ = Mrk o/ {(1—2%) (1—p?)},
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62 DR. J. W. NICHOLSON ON OBLATE SPHEROIDAL

We shall not lose any generality necessary for our problem if we make the restriction
that 2, u, besides being not greater than unity, are both positive. If we write A = cos «y,
u = cos ,, therefore », and , are acute, and the critical values of x are cos (v, 4-w,);
these values are equal to 2auF {(1—2%) (1—u?)}, and they will be denoted by « and £
(x<<B). Then

g—g (2n+1) P,(2) P, (») P, (2) = {(x—=) (B—2)} > or zero ;

and if f(z) be any function, finite and continuous between 41, but not necessarily
real,

. %(2n+1) P, () Pn(u)j:Pn () f () div = JB {(xfof??élfx)}%'

Choose f(z) = {—=x, then since

! n(m) — —n—1
| e = 2ma0),

we find

o g
7 307 (21) Pa ) Paw) g (1) = |
The integral is easily evaluated, and we find

2 cos (1) . (20 1) P, 0) Py (1) 0 (0) = ?17} <ﬁ-+_¢>

Z sin (n-+1) 5. (201) P (1) Py (1) 0, (0) =+ {--5;7}; sin ( 9"_"2|1¢>

where
(o) = tan™ 7, %) o= (HL), py= (B}
These are equivalent to
g: (=) (4n+43) Pyyyy (1) Popyr (1) @ona (€) = '_1—‘;: cos & (pitga), . . (26)
0 \/9192
S () (D) P () Par) 0 () = i sind (b (27)

The square roots must be taken positively.
Tor the final evaluation of the first series, which is required, we note that

abB =20, af = Nui—L
(p1p.)" = (L2a?) (CP?) = L4 08 (4np°— 20— 20 +2) - (W2 — 1 )

0,0y = {(1+C2“7\2*M2)2+4}~2U~2C2}%;

or

the positive value of the square root being taken in this and all other cases.
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HARMONICS AND THEIR APPLICATIONS. 63

Again
cos (i F-a) = (2B —L%)fp10, = 2 cosz_ql)l:g@ —1=1—2sn? qﬁ__l“g_%,

and- finally
% (___)n (47’&‘!‘8) P2n+‘1 (7\) P27L+1 (P‘) Qons1 (C) /
N S T i 05 e € s ) S Y

A A

SOCIETY

OF

OF

= 2% {(1+C2_)'2_~“‘2)2+4)\2EL2C2}*

In the same manner
Z (=) (dnt1) Pay (1) Pon (1) g2 (8)

_ H(l +C2*“7\2~Mz)+47\251«2c2}é+'(1 _}_Cz_}\zmlﬁ)]é (29)
¥ {(1_}_@_7\2_”2)2_‘_4)\2uzcz}:ﬁ; . .

It is understood again that any square root is positive.

The presence of ¢, ({) secures the convergency of the series. The formule are true
when 2 and p are positive and do not exceed unity. It is not necessary that ¢ should
be real, though our proof fails if ¢ is wholly imaginary between the limits 4 ¢. This case,
however, will not occur in the applications, where ¢ will always be real.

Some important special cases are worthy of notice. If 2 =1, we find

% (___)n (4n+3) P2n+1 (“‘) q2n+1 (t-') = @2“:L_C2, . .’ . . . (30)
5 (=) (1) Poy ) gon () = oz (31)
0 (% H;
Further specialising by writing p = 1,
20:' (___)n (47L+3) Qan+1 (C) = T‘_T_Tgé; (32)
5 : ¢
Z(—) = .
S (=) (1) 4 () = (3)
The first has already been proved in this section by a much simpler method, which
serves as a verification of the signs of the general results. '

Any further transformation of the functions of type P, into those of type ¢, by the
same method of integration term by term, serves to enhance the absolute convergency
of the series, while giving valuable results for our general purposes. For example,
a previous result yields

S PPy W) de [ w? du
2_‘ —\» 4 . P‘ n+41 —
0 (=) (4n+3) gansa (9) L w02 j_l(u“'wL"fzz) (w22’
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64 DR. J. W. NICHOLSON ON OBLATE SPHEROIDAL
or alternatively

@ L *1 ')’]2 C2
% (41n4-3) @any1 (1) Qansr (§) = n—z;?JodM <m*“m>

—_— ] - el Y -1
__nz__cz(qcot n—Ccot™*%). . . . (34)

For the special case y = ¢,

‘:"‘(47&_,_8) [9'2n+1(c)]2:%<1_‘1_§2-60tc_ C) (35)
Similarly
% Py, (wWdue [ d
S () 1) g @) [ Bl o [ e
or
5 (4n-+1) g (1) g0n () =72 [/ b iy — ) ()
o 2n 2n 0 “2+n2 “2_[_C2 \:2__,),]2/
—_— ]' —1 0 o -1
_CQ—W‘Q{CCOt n—1 cot C}. .. .. (36)
and in the special case 4 = ¢,
Bt [gn (P =3Pl )
We notice that by addition
(N . ‘
m—%(Zn{—i)[qn(C)]. e e ... (38)

These formula all appear to be quite new. We now, in conclusion, derive the most
important of all such results for the solution of our hydrodynamical problem.
Returning to (28) we have

() (013) P09 P (1) g () = L )F,

where, » and @ being positive and less than unity,
A — (1 _I_Z2___>\2’__p'2)2_[_4)\2y‘2§2‘

We cannot proceed in this to the limit ¢ = 0 without a careful consideration of A.
In A? the positive square root must be taken, and when { =0, A = (1—2¥—p?)’..  Two
cases must be ‘considered.

If
At <1, Ab = 1—2"—p?
and we find

©

% (—)"(4n-+3) Py (2) Ponya (1) Gans1(0) = 0.

But if
)\1_1_“2> ]-: Aé - )\2“{““2_17
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HARMONICS AND THEIR APPLICATIONS. 65

and therefore equation (A)

oo

% (——)"(4:”“:_3) P2n+1(7\) P2n,+1 (“‘) QQ)L-H(O) = (}\2+M2”_1)~%-

Substituting for ¢,,,, (0) by equation (7), we obtain the formula

2, . 2.4.6....2
2(=) (4”_§”3){1 3.5 2ni1

0

}P?n-ﬂ()\) P, (p) = (P p—1)F if AP ppt>1
=0 if api<l. . . (39)
» and p being both positive or both negative.

This is an interesting formula, in the fact that the odd numbers occur in an unusual
way in the denominator. The writer has, however, obtained also another proof on
different lines, which is not included in this discussion.

Similar considerations apply to functions of even order. Without giving the whole
argument again, we may quote the results as follows :—

The series
1.3.5....2n—

2.4.6....2n

T
2

c M8

(=) tn-+1)] 1P () Baw)

or its equivalent

o M8

S (— ) (4n+1) Py, () Py (1) g20(0)

has the value (1—2a2—u2)! if this quantity is real, and the value zero if not. Again,
% and p are positive and not individually greater than unity, as in fact is evident.

This formula has also been proved by an independent method. v

As suggested already, the equation (A) is one of the landmarks in the solution of
our hydrodynamical problem. If we multiply by /(A2--+?), where 4 is any real quantity,
and integrate from zero to unity,

A dA
(A*40%) o/ (WP —1)

e 1p )
3 ()" (408) Py (#) g (0) L Lz.‘rzf_l,i(qfl Ol = j

where the range of integration in the latter integral extends over those values between
0 and 1 for which »2--p2—1 is positive : the range is therefore from 0 to /(1—p?2).
Thus .

» ) . N (1= A dr
(414+3) Pyyy1 (4) @ongr (0) @angn (1) == L (2 ) /(e —1)

e
v/ (1—p* %) V(1= +47%)

8

<

(40)

where % is real and p positive and not greater than unity.

This formula in the next section will lead us directly to a solution of the problem
in hydrodynamics, but it is interesting to continue somewhat further with these
summations of series.

VOL. COXXIV.—A, K
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66 DR. J. W. NICHOLSON ON OBLATE SPHEROIDAL

In particular, for instance,

2.4 sin~! ©

i 2. 4..0m . ‘
§(47%+3)<3 5. 2n+1> P (v) = (1—)

whence we can express (sin~! )2 as a series of zonal harmonics—a new formula. By
a further integration

(e<<1). . . . (41)

S\ 2.4...2n ¥ _ ' sin7'p nlp.__”_*
§( ) (4n+3)<3.5 2n—l—1> _jo \/(1—;). )u ( . Sin xdl - (42)
In the same manner
© . N 1P n(;\) dr . (1—u2) d
%(‘“) (4n~1) Py, (1) g2, (0) 'Y)j-o——;?‘—w“ njo () /(1 —re—p)’
or
5 (4n-+1) Poy (4) i (1) i (0) = 1 [* 92
o n 2n 2n 0,,12_}_(1__“2) sin2 (P’
or .
2 (401) Pay (1) gan (1) gan (0) = S(1—p4w7)7 .o (43)

with the following consequences, which can easily be deduced,

» ¢ 1

S (n ) I P W g () = = - - - - - - (4)
- 1.3...2n—1\ 2 1

%(4n+1)<74——2n——> Pzn(f*‘)—;'\/l"_,g(l";él)- I %3))
® / __1\3

%‘:(__)n (47’?/—"]—)(——_1 '2?.) 4.:.‘?7;7}_ 1> q2n( «7f+n . . . . . . . . (46)
%(—-)"(47%-1—1)(%—:1)3:%. SRR T4
3 . 1 /ST

E a0 {5 a0 0 () = e (C )

.

All these formule are of considerable utility in problems of applied mathematics
arising from the circular disc, in addition to those discussed in the present paper.

§10. Velocity Potential of Disturbance on the Disc and its Axis. Scattering of Motion.

We showed in the penultimate section that the velocity potential due to the disc
was

r 2 %
¢' = ;;,c ‘E‘ (4n+3) 92n+1(0/a') P2n+1(y') Q2n+1 (C)
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HARMONICS AND THEIR APPLICATIONS. 67

at any point (u, €) in the external space. On the disc, { = 0, and
- 5 =
(¢ )e=o = o 'E (47+3) Qo (C/“) Py () @241 (0)

This series has been summed in the last section, and quoting the value

®

2 c2>‘%
Ny = == (1—p2+-S) tanr B
(6" )e=0 o < [ —I—a/a an, \/(1*—{L2+-C2/a2)
The radius of the disc being a, the value of ¢’ at a point on the disc at radius p is, since

(l{l. = \/a?,-,,_sz

(¢’);.=(,:;,—\/—(05—_F?—)tan"‘.M<%>. R (1))

which is a comparatively simple expression. The value of ¢ .on the disc, due to the
unit source at the point (0, O, —¢), is (c2+p?)~%.
We notice, as a verification, that if the radius is infinite

¢’ = (*-Fp*)~*

as for a source at the image point P, for the source is then in the presence of an infinite
barrier. ¢’ is zero at p = a, and therefore is continuous, for we have seen already
that its value on the rest of the plane of the disc is zero.

This continuity of ¢ at the edge of the disc is one of the most difficult conditions
to satisfy analytically in such problems, if the solution is not obtained by some form
of harmonic analysis. In the method of discontinuous integrals, for example, many
apparent solutions of such problems can be found, in that the conditions over the
disc are satisfied (d¢/on), but it appears on trial that ¢ is not continuous at the edge,
so that the suggested solution is ruled out.

The total value of the potential on the disc, including that due to the source, is

1 L2 at—p*
¢ ._.\/(02_]*92){““‘0&11 /\/<~—————02+P2>} e e . (B0)

From this fundamental formula, the entire theory can be developed. TFor example,
in one form, the value of ¢’ at an external point with z positive is, Jf we use the Fourier-
Bessel integral in the ordinary manner,

* « 2u du a?—p?
[ —Az 4 — -1 =4
¢ = jﬂ re=J, (hp) dr Jo R tan M T o (w) oo (B1)

The second integral cannot apparently be evaluated in simple general terms, but
if the disc is small, the integral can be readily determined to any desired order of a.
This is the problem of “ scattering ”” of the motion due to the source.

K 2
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63 DR. J. W. NICHOLSON ON OBLATE SPHEROIDAL

At a point on the axis, p = 0, and reversing the order of integration —an obviously
justifiable process—

R N LS4 (i N IR PE
¢ =20 At A () [ e

=5 «/(cuiiizz-W) tant o/ <%53:_>

as a single integral. = At a sufficient distance, this can be expanded in negative powers

of z, by writing
1

V(2 Hp?)
2

w (___\n ¢ [ @ 2n+1 ! 02,2
(/)I — :)E( 2) 22” -1 J _ dpv tan-! /\/(C(/‘ 9 >'
nz o 22 2 (n 1R )o 4/ Pt P f-p?
It this be generalised for any orientation after the usual manner, we obtain a very
important formula. The zonal harmonic series due to the obstacle is

1 @® ) 277; ! EL2n
=2 (— ’l——-—* .

20 ( ) 2271 (77 )2 Jon
Thus

(52)

2 & n 2n+1 1 ! -
(/’/ - ; ‘:: (_.~) Gy« m ;-27&—'!*_5 P2n+l (COS O) o (:)3)

1 2n+1dy] 1__{)2 \
. = | -1 T 1
n [ \/ *]‘02/05 an N/<,] ~}—C?‘/O&2) (54)

13

where

This expression represents the *“ scattering,” but it ceases to be valid if » <a. The
functions «, are initially simple. 'We may also write

L 1 n2n+1 1 ]___.,)2
%y j \/(7} {“02/062) sin /\/\1—}—(02/@2)>‘

By simple integration by parts,

=) o ) L LA
c\

c e
= 1l—=cot™' = = <~ .
a o Mg/

This simple law, however, does not continue, and the other coeflicients are not merely
q functions. Thus

They all vanish when ¢ is infinite, as we should expect. The scattered effect at a great
distance is, to a sufficient order,
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For a great distance the disc effectively acts as a doublet of strength

L e ¢
ma <1- =~ cot™! —>,
@ a
where m 13 the strength of the source.
The function «, admits an expansion of some elegance in powers of (1--¢2/a?)-!

which is very convergent, even when ¢ and ¢ are quite comparable magnitudes. For
we may write, if o« = /(1-4c?/a?),

1
%:;Jo 2 sin~' y

V(=)
where y = VA _y}
We know tha-t

and 18 less than unity.

sinTly 50 v :§
\/——————————(1 ] y%3y+35 + ... >

and thus

et ¢ | 1 1 1
E “([j1)1 oc2s+1 [ 7)271“ (1_~y]2)s+2 OZYI
nlg 2l Tt 1
@ o (2s-+1) 1T (n+4-s-4-§) o2+
22"+1n!n+1’ 1-{1 2 -]'—“l* 2.4 1
(2n-+3)! o2 on+5 2 2nt+5. 2047 ot

Qll—‘

I
oy

This is the series mentioned. From it we may derive an alternative, and considerably
more useful, integral for «,. Directly from the last equation,

oman!ntlll I‘(%+5) [ L3 1 3 oyt 1.3 9\ .1 l
o = ot L L L lm){B(n P 0 5B g 2+ Bk, 3)

(using the ordinary B-function)

Pn-11 oy [V @t da
— o1 Y A Y
2 2 | 3 [ (n'I 2) J o de,

or if x = w2, recalling also that o® = 1--c*/a?,

v — (/n/ !)222% j‘l ?/0271-}-2 d,u)
o (2n1) Vo +ctfa?’

which is very much simpler. It shows at once that

2n+2c? v 1 2242 (-1 1)
on-+3a2 " o2n+3°  2n+3!

n+1+
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and with «, <= 1—(¢/a) cot~* ¢/a, and this relation, the harmonic series becomes

2 & 2n--11a*+!
JA— _—— erte b L .
s A (n!)? saia P (cos 0),
and can be calculated rapidly to any order of #-1.
Let us now recall the formula giving the effect on the axis of z when the series is
convergent. We have

, 2 2(—) 201!

— 2041
¢ - ;2;2%: z2n 2271 (72/ 1)206 i %y
_2a flﬂ@_{ﬁ(_)n /@_@)2}
7z Jow?+cfa? | o \ 2z,

with the new value of o, The series involved converges absolutely and uniformly
if waz is less than unity, orif 2>, andin these circumstances the processes involved are
legitimate. The sum of the series is

1— (W\)z + ('M)l =

z z 2-atu?’

and therefore

- 2 J‘ w? dw

ar Jo (W Fe2fa®) (WP 22 a?)’

which is symmetrical in c and z.  This integral can be evaluated at once. The treatment
of «, is not valid at the critical case ¢ = 0, so that this integral cannot then be relied
upon. |
It
‘ 02/0/2- :})2? zz/OL?‘ — qz

2 1t f 11 ]
¢ o 'pz__qz L dw 1102M]L_Q2 102"!‘]02]

:;_Z_ 2]‘ QJ—I— tcn“’<l>~ltan“’ 1l
ar p'—q* g v »
2  a* | cot? —71> cot1 &
:;E'CT__—z—ZE { - (\a o aj,‘. . . . . . . (56)
. 2 c

giving the potential produced on the axis by the disc. It is, of course, finite when
z = ¢, as would be expected.

§11. Pressure on the Disc.

The potential ¢’ due to the disc, and given, as a special case from the spheroid,
by

# = 2 5 (404-3) Garaa (0/0) Panan (1) @ (9)
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HARMONICS AND THEIR APPLICATIONS. 71

at all points, is an odd function of u. At the point —u, it becomes —¢’.  Corre-
sponding points -+p are similarly situated at opposite sides of the dise, and their values
of ¢’ are equal and opposite. In particular, the values are equal and opposite on the
disc on its two sides. This condition is, of course, necessary to any solution.

If ¢, on the other hand, is the potential on the disc due to the source, it is the same
in sign on both sides, and the total potentials on the two sides are therefore respectively

¢+ ¢

The normal velocity is zero over the surface, and the surface velocities on the two
sides are

%),

Therefore, if o be the density of the liquid, the resultant pressure on the disc is

o= o (32 -8-3)

the integral being taken over one side of the disc. Thus

og’
== 8o [ g(f ap Pd

@)oo= =gy A (578 = mr V (G75)
3¢’ £ R A N !
(ap>zxo:” n(cfi&){wc}ﬂz) sin” A/ (Zz—x~§2> pvr=ik

| 1 , 0 e

(8o = TToT TR (519 i

pp= bo e e o A () el

This is the required exact expression. -If the source has strength m, giving ¢ = m[R
as its potential, the result requites a factor m2.
The evaluation of the integral is somewhat tedious, and proceeds as follows :—

Let - r o3dlp sin- /\/ a,mp
o do(er ) Z—PCZ )’

_ [¢_e®de ad—
I2 j (02+02)5/2( P )

Now

and
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72 DR. J. W. NICHOLSON ON OBLATE SPHEROIDAL
so that

pr—p, = dom? (I,-+1,).
Then integrating by parts,

- . 1 1 c* 1 f =1 22—___—&3 '
L= H o2-c? | ;(92+Cz)2j o M<a2+02,>]<>

“ ede [ 1 i @
+jo \/()6 —e?) 1 (o2 +?) 3 + Q(Pz_l_cz)sllgjy

e | ¢ 4/ odo
2 cot *128( +2'3(\602/Ho\/(a—-o)(p216)

1 o [ 2 93(_8_‘)211
T Q¢ cot o | .[080_*—6 cde) |
where
a o dp ¢
I :J = cot=1
Pl (@ —e?) (2 e?) @
by an easy reduction.
Also,
I:r c { L — e
P Ve =) e b (et e
e [ a _4(32 8 >2}I
T lede | 3(\0 oc/ )V
and
2 2
LT, = L cob !2—13_(.? ) L
a cde
1 ¢ _co Lo ¢
_ <16 _ 60 10 1!
22 b a 60dc ¢ oe 0 «
e b ogopr1 G b @3
202 a  Ge' (aPct)?

The pressure is therefore
c_a &3¢

P, = 2om? [»1« cot~t =
p pz 102

a B (oot D

and for a distant source, becomes mom?[c?.

§12. The General Solution.

The general solution of the problem may be exhibited in various forms, but in no
case can anything simpler than a definite integral be given, for though the integral
can be evaluated, its expression is very long and conveys no useful information not
already derived.

We may consider, in the first place, the Fourier-Bessel form of solution. Having
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HARMONICS AND THEIR APPLICATIONS. 73

now a complete knowledge of ¢’ over the plane z = 0, we may write down the general
solution at once, as, on the positive side, for example,

/ =jjAJo(7n) o= b L wju:l_f; 2)J o (A) tan-! «/(‘;;i)

Expanding J, (rp) as a power series, we find

« ‘L d(}. J. 0 tan] /\/(0[/2,_“{1?) o J{L § . )\Zsuz.@q«] » \/ /OY/Z ______ P»?'\ d'L
@) tan S | == =) =t —
J \/( 2—}—@) o () ci-f-pl oS::o( ) 2% (5 1) b (c’ -u? ) v (c® ﬂﬁ)

where «, is the integral defined in the penultimate section, where we showed that «,
was identical with a different type of integral, namely,

_ 223(8 y)z Jl Wwint2 (;Z_/I’f‘_
P 281! Jowrt-c? o
Therefore

“__udp oo Jf@ e wrdw 3 (aw)
J‘x/( 24p2) " Jo(e) tan /\/<c2+§x2> jowz—f—cz/a %( )23+].!

. jl wr dw  sin Aqw
oW la* haw

a very curious formula.
Hinally,

‘ » o 1,/ k.,“ A o
q [ -—éj 6"/\1(]0 (/\P) (l}\j w. (,Z'U/’ s . . . . . (‘)8)

7o Jo o w-+c?fa?

(except at ¢ = 0). This is the Fourier-Bessel solution.
It can be reduced to a single integral by an inversion of its order of integration, for
the integral

j re=*J, () cos haw dr
0
can be expressed as a function of w. Starting from the universal formula (z positive)

jme—)‘(”m Jo (he) dh = {p2+ (z-Fre)2} 7,
0

we find, by equation of real and imaginary parts on the two sides of this relation,

—| e T, re dh — —= i ‘/’
jo Jo(2p) sin Acd VAR sin
where
R? == (p-}22—c?)*-423¢2, 2zcf(p?+22—c?) = tan ¢,

and positive square roots are to be taken. The actual form is in fact discontinuous
according to the relative values of (z, ¢, ). The integral required has a value somewhat
VOL. CCXXIV.—A. L
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74 DR. J. W. NICHOLSON ON OBLATE SPHEROIDAL

complicated. The final value for ¢’ to which we are led in this way is identical with
those mentioned below, though differently obtained, and we do not consider it necessary
to do more than outline this method in these few words. The result is, of course,
expressed in cylindrical co-ordinates (2, ), under the integral sign.

In the second method, we may calculate ¢’ on the axis p = 0, as in the penultimate
section, where we found

Z?’L—!«]_f a2n+1
’LW pEnte 2n+1 (cos 0)

¢ =

F!ILO

R IC

at a distance greater than a, by calculating its axial value, and generalising immediately
with spherical co-ordinates. Quoting the previous value for «,, we can then sum
this series as follows :-—

n 2n 1_1 | O{,an N
Zzn (7’& 1) ?271 12 1 2n+41 (CO% 6)

20 18, [aw\
:-NJ 2(—) <T> P,,,1 (cos 0). 2+02/ S daw.

By the definition of Legendre functions as coefficients in a series,

(n !)2 92n J-l w22 daw
2n~+-],1 o w-Fc*fa?

5 (—) “_71’)2” 0y — L 7 L _ ! }
0 (=) < r Puya (cos 6) 2w |V 1—2hiu+nE A/ 1+2hiu--h?
(h == awlr, e = cos 0.)

On reduction, the expression on the right is real, and

f daw “ [ . — - 1 (59)
P = wlo o wt-cfa?’ Wr—cw—giarw v rP—atw 2w

which is the general solution in spherical co-ordinates (v, cos=* u), on one side of the disc.
Obviously we can, by virtue of the form of this expression, write down an ‘maginary
image system consisting of two line distributions of sources with a definite law of
density.

As stated, this integral can be evaluated, but the resu]t 1s g0 complicated that no
useful purpose is served by exhibiting the work.

Another method of procedure gives an interesting geometrical property of the general
solution. We find from previous theorems

%(Zn—l—l)Pn(M)~r Jl (v 5/4P€;2(;J()¢/P%(Z?))J’ W

T
2

B J j axy dx dy
— @) () Vi—r—y = 2y

the latter integral being taken for values of x and y between +1, and making
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HARMONICS AND THEIR APPLICATIONS. 75

1—a?—y2—p2+-2uxy positive. All such values are contained within the square
= 41, y = +1, and the curve
o —2ury-+y? = 1—p2,

which is an ellipse of semi-axis v/1—u, v/1-p lying along the diagonals of the square.
The double integral is therefore taken over the shaded

area In the figure, on the left-hand side. The terms for

which 7 is even vanish, since

j‘ wP, (x) da __ 0
—1

sz “_!__ CZ

Thus the expression on the left may be written

S

4. (4-‘”"}—3) P2n+1 ([‘L) Qonr (C) Gan+1 (7)) ;

B d
<

and since

9 @
¢ = = 2 (4n+8) Pones (8) Ganrs (/) G (2),
we find
/:i” ay do dy
P @) (et VIt 2eay

(60)

taken over the shaded area. We do not include a proof that the result of this process
is again in agreement with the formula below.

Finally, the simplest method of obtaining a single integral is to start from one of
our earlier formule of summation of harmonic series, namely,

@

% (_,,)n (47”-_I_3) P2n+l (“‘) P2n+1 ()\) q2n+1 (C)
[(142—r2—p2)2 | 47\2“23;2]5_(4@_;\2_“2)}%
2§ {(1+c2—7\2_—“2)2+47\2“‘2C2}% 2
where all square roots are taken positively, and (», 1) range from zero to unity.
Since

() s (efo) = [ s B,

we obtain immediately

_% Jx A d {{[1+C2“‘7\2”‘M2}2+47\2M2C2} —(1+ Cz_)\z_uz)}i
am Jo )\2+02/a2 9 {(1,_*_@__;\2_““2)2 _}_4;\2”22;2} ’

where the value of

¢’ = (61)

{( 1-F C2—7\2—p,2)2—{—47\2p.2§2}*

requires consideration. For example, if { = 0, the value may be 1—22—p? or p2-32—1,
whichever may be positive. This integral requires therefore to be divided into two
parts, and its interest is mainly formal. :

L 2
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76 DR. J. W. NICHOLSON ON OBLATE SPHEROIDAL

The analysis of this problem is now sufficiently developed for our purpose, which,
so far as the present problem is concerned, is rather to develop the requisite analysis
of the subject than to elucidate the physics of one special problem in complete detail.
We do not therefore examine the stream lines, whose equation follows at once from
the Fourier-Bessel formula.

§13. 4 Reciprocal Theorem.
We note that the harmonic (spheroidal) series for ¢ is symmetrical in ¢/a and ¢,
a fact not readily foreseen. This gives us an interesting reciprocal property. On the
axis, where p =1, z=a{, or { ==zJa. Consider two problems concerning the same
dige, one with a source at —c¢ and the other with one at —¢. < The effect of the dise
is equal at —¢’ in the first case and —e¢ in the second.”

Part I
§14. Electrieal Applications.

In the present section we obtain the exact solution, by the preceding methods, of
several hitherto analytically unsolved problems of electricity which are concerned with
the circular disc. In each case, no exhaustive discussion of the solutions from a physical
standpoint—which could be supplied at once by various modes of approximation in
the majority of cases—has been included, largely from considerations of space. Such
modes of approximation are usually evident, and we deem it more appropriate, for
the time being, to confine ourselves closely to the mere determination of exact solutions
themselves, and their verifications. When, for example, a physical quantity, such
as the charge on the circular disc in various circumstances, has been expressed as a
definite integral which does not admit an evaluation in terms of known functions in the
general case, this integral supplies the simplest general solution possible, and its
evaluation by approximate methods when certain quantities are small or large is mainly
a mechanical process, and the inclusion of such processes in many cases would tend to
overload the discussion and to obscure the simple general lines of argument on which
all the results are based. 'We may state, however, that a definite integral has never
been left as such, unless its evaluation by approximate methods is, in fact, a simple
process. ’

The problems in this portion of the memoir are of a somewhat varied type, and in
no sense exhaustive. We have made a selection of the more interesting of those
whose solution is possible by the present methods.

§15. A Charge --e 1s on the Aavs of an Oblate Spheroid or Circular Disc, kept at Zero
Potential. To Find the Potential at any External Point, and the Charge Induced.
If the charge is at (0, 0,—c), the potential due to it alone is, in the neighbourhood

of the spheroid,

E

V — D

R a

et
o M8

(=) (20+1) gu (c/a) P, () p. (€),
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HARMONICS AND THEIR APPLICATIONS, 77

the spheroid being as before { = ¢, < c¢fa, or in Cartesians,

z2 O2

R CEE

and its special case, the circular disc z =0, p = a. This series is convergent when
¢ is nearly equal to ¢, or less than c/a.
The disturbance V' due to the induced charge on the spheroid is

=1,

‘7/::‘:E %(* ) ()71/ qn C/Ct P [)* [{n(/n(t)

(2281}

where K, is required.  Since V--V/ = 0 if ¢ = ¢, K, = ~—p,(¢)[7.(¢,), and thus

[ E i ", _ 0 ]@.(Co)
Vi=—= Z (=) 2n-+1) g, (cfa) P G qn(C)qwn(;u)‘

In the special case of the circular disc, we find, with ¢, = 0,

V/ — 2E i

aT o

(4n| 1 Q>u C/(‘(’ P’n(u') gm( ) ¢ : © . . (62)

§16. The Induced Charge.

When ¢ is very large, it becomes »/a, where 7 is dlstance from the origin. Moreover,

if ¢ is large, .
B on (’ﬂ, 1)2 1 . on (n !)2 g>n+l
q'n(c) - 27Z+1 ? C”"‘l o 27L+1 ’ (')" ’

and p becomes the cosine of the spherical polar angle 6. At a sufficiently great distance,
therefore, the terms of V/ are in increasing order of =, and the first is

Lk

showing that the total charge induced on the spheroid is

E/ - —E(]o <§>/% (Co);

since P.(%) = 1. This very fundamental result appears to be new.
If e is the eccentricity of the generating section of the spheroid, we find

E = —E cot™ <a>/cot (%) = —E cot~ <a>/s1n ... (63)

The formula admits a variety of verifications. For example, in the case of a circular

dise, it becomes
=2 vt <C>,
T o
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78 DR. J. W. NICHOLSON ON OBLATE SPHEROIDAL

where ¢ is the radius, and ¢ the distance of E from the dise. For a very large disc
@ = oo, and ¥ = —HK, which is correct.

We can pass to the case of a sphere by taking @ small and ¢, large so that «f, = R,
the radius of the sphere. In this case,

. ER
— -1 O
' = —HK tan < > / tan~ (R) ;

in agreement with the ordinary theory.
The actual distribution of charge on the spheroid, however, does not admit a simple
expression. The surface density is o, where

o ) 1 1+C2 | o /
dra = (V V) = 4/2]% ERA
__B .gliﬁi S () ¢ I (%) 1.
' o g2 u v( =)y (@n-}1)q <a>])n () 1277: (G) - g. (¢ Zo)J ’
or since
P (00 (0) —a, (), (0 = 1
—_— e E oy 2)-F (] 2 _ém _\n e Pn (V‘)
= E@amu>alg>§<>@num()%“)

If the charge K is somewhat distant, this readily yields a convergent development
in power of afc.

For the circular disc two distinct series require summation. As, however, we
know V, it is sufficient to find o,, the portion of ¢ corresponding to V', which is

= E 5 —\n . c _lpn (O) q:;’ (O\;
= oy 2 (), (£) P, () 22O

__E ,

- uTCth o (4:72/ %1) q9n< > PQn (P‘) q:an (0) .

The direct summation of this series by our previous methods presents difticulties
which make the investigation very long, for the formula

G () = ()| Eelt)

fails when # = 0.  We therefore do not include the investigation, as the surface density
can be obtained in an integral form by an alternative and rapid method.

§17. Fourier-Bessel Solution for the Disc.

On the part of the plane outside the disc, p = 0, and putting . = 0 in one of the
formulee of the second section

%::' (w)” (47?7»1“‘ J) Pzn ()\) PQn ({J‘) ';7274 (‘C) { { (l - Cz;{)\z-—uggzﬁ}\?ifuz;;:i :;\l 2!—;:&2}—_,\2——“ }%
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HARMONICS AND THEIR APPLICATIONS. 79

no doubt arising regarding the sign of square roots, as 1--{2—p? is necessarily positive.

We find

?(wﬁ)” (4:7@*}["1)1)271( )I)m( )Q?n(c) = m(OEKEI) . . (64)
Aecording]y, :
R,
D) g (efe) P (0) 0 () = 2Lﬂ~}i2/a2v (1—1--21‘42—%)
.if dt e i tan—! < ( Cg C/Ol/ >
N J f,_‘,.q A\, (1 FEa?) C(/q,
el <l G- l )

Accordingly, |

1) 1 o (/O efa?)

Vo= =2 TaTreT ey ™ < Tofer >

and when p. = 0, p = ¢ /(1+4-¢?), so that on reduction

(V/)z;g:‘—%@-\—/-zc—i_—ggz—)tan“l{%«/<g:i;2>}. .« . . (65)

The value of V on this plane is H/,/(c*4¢?), so that the total potential there, if

o> a, is B 2
Vvi= «/(Ekpz)t ntn_l{c M(pf;)}] Coo o 69

which is zero as ¢ == @, on the boundary of the disc. The continuity with the potential
on the conductor is accordingly satisfied. We may write,

L A CRVA (=)

!
i) ol
VAV =0  (e<a) J »

and therefore, in general, the potential at any point of space (z positive) is

v B e [ S /G - o

This is the Fourier-Bessel solution of the problem. We note that if ¢ is large, the
potential gives the correct total charge on the disc,—a further verification.

§18. Effect of the Disc in Spherical Harmonics.

An expression in a series of spherical harmonics, valid at a sufficient distance, of the
potential V/ due to the disc, cannot be obtained at all readily with any rigour from the
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80 DR. J. W. NICHOLSON ON OBLATE SPHEROIDATL

Fourier-Bessel solution. We may, however, proceed otherwise, first calculating, directly
from the series in spheroidal harmonics, the effect at a distant point on the axis.

By one of the formule of the second section, with p =1 (a point on the axis), we
have

5 n E ) C
(Z‘(~) (477’_}_1) :P?n (>\) 'sz (1) Qon (C) = —'2—:{;—7'\_2)
there being no delicate question of sign to consider in this case, p being a magnitude
not exceeding unity. Thus with
‘ P, ()
’ . cem Y - 2n d/\
QZn(q) ( ) U JO ?\2’%"’)2
we find

o 1 A
X (4 F 1) @ (9) Py (1) g (8) == 18 ASE—
X ( -t ) Gon (,]) 2n ( ) Gon ((’J) Ui JU (}\2_1,‘,)&) ()\2_‘}* (3“)

The potential V/ on the axis becomes

V= = 2B 8 (4041) g (ef0) P (1) ()
—_2E¢ j d
an “. U()\zwkczlwz) ()\z_l_cz)r

and ¢ is now zfa. lvaluating the integral, we find

Vi=— e c(?? cot? & — L tan- 1>/<§2——9:>
ar o \¢ a ¢ 4 a®

:~~2Ecz<lcot“lg—*ijicot‘l—z—>/(zz-cz),. .. (69)
c a @

z

a very simple exact expression, which, being symmetrical in 2z and ¢, shows a reciprocal

property.
Instead of expanding this directly in negative powers of z, we return to the integral,
which admits the development

i 2Bey L _r s ] dh
V_ CJOLCQ Z‘i ‘ CG 4 ( ) C2n+2 l ...sz*}'cz/az

if » exceeds unity, or z is greater than ¢. This becomes

zq‘ 3 L an rl 2n
V=B oy o Jm——-x D,
T R Nl

which generalises at once into the harmonic series

2n 1 A2n
() S P | smdn L (70)

0 7\2"}“02/CL2
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| HARMONICS AND THEIR APPLICATIONS. 81

The integrals appearing in the formula are identical with those found in the last
section and denoted by «,, and their recurrence formula has been given.
It is, however, worthy of notice that the first term is

oF ¢ 1 Jl o 2R 1 e
= — S S ot 2
0 X24-c?fa? T a

o e

which is correct, since the total charge of the disc is (—2L cot=! ¢/a)/=, as proved already.
This harmonic series is valid when » > a.

The determination of the corresponding harmonic series for values of r less than a
requires some care. On the axis, V’ is still given, of course, by the formula

V' = —2Fez (1 cot=1 € Lot E>/(z2~—02),
¢ a % 104
for which a convergent development is needed when z is small, or ¢ is small, when
¢ = z[a, = cla. We may write

_:Q.g__ _l_ > "1_1_-—-}, < _1}_>~_—:_—LC {!.(_TE—- € _1">—-—.I.:.<E-—— 3 -1 >}
- <Y) tan ; thm 7 7 n\2 tan=" 7 7 \5 tan—! ¢

_ . ®™ _Ctan'n—mtan' ¢
2 (C-+n) C—? ’
but it is not in a very convenient form for expansion in ascending powers of . It is
better to obtain the analytical continuation of the function by contour integration.
Let the complex function of z,

(@) ),

be integrated round the contour in the figure, the small semicircles enclosing the points
z =, 2 =1¢, and being of radius ¢, the large )
quadrant being at infinity. Then the function has |~~~ =~
no poles in the contour and its integral is zero. I

Let # and vy denote the real and imaginary parts

of 2, # and y being themselves real, and we find, |% \\
since the integral on the large quadrant obviously )j N
is zero to order 1/ oo?,

|
jo (w2+n2§lsz2+ ) - j 1 (902+“020)Z'9(Cw2+ &%) ) \‘
RS N S |

where v, and vy, are the semicircles. On y,, we may write z = w-f-<e”, and

kol

ee” dYy e 1

P
LI - j; ce® . qun . (P - 2_71' ' G2

VOL. CCXXIV.—A, M
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82 DR. J. W. NICHOLSON ON OBLATE SPHEROIDAL

We assume ¢ to be positive, so that the pole z = ¢ is on the upper half of the axis.
Similarly,’
J— T .L

w20

and also we find j , which is the integral over the straight portion of the imaginary
3

axis, is given in the limit ¢ > 0 by

& a LtM(ji: * jii+‘z—> (wz—yzfl(?{;-"-yz) -

in the limit, being wholly imaginary before the limit. Thus

r ' dx _ ks o [ ” dx
LEE T T W Er L Fre e

which is an equivalent of the previous form, suitable for convergent development in
ascending powers of Z.

We thus find
T %E_ ! diI;‘
V= ar Cjo (x®4n?) (2*--22)

__2B] = (T de 1/ 2 U
 am {2 (n-+%) 1c L x2+‘ﬂ2.w2<l ;“C'z“}“—' >}

— ~E<l—§ +§2§- +(—)"§ + >

C

'

R 2Ecz ” dx . 22 \a 221

and the harmonic series for points near the disc is

\
\

Bl : :
Ve = 2P @ SR ) () DR )

. 2Ee (7 dx 3 2n+1

a=xr

The two portions are of different types, the convergency of the first being determined
by r/c, in relation to the charge E, and of the second by 7/a, in relation to the disc.
The first portion is in fact —V, where V is the potential due to the charge E.

In the process by which we deduced the analytical continuation of the function on
the axis, we assumed ¢ and therefore z to be positive.

Thus, on the positive side of the disc, with » < a, the total potential is given by

2Ec [” da 3 o
Y e P BB )

ol
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HARMONICS AND THEIR APPLICATIONS. 83

This formula must involve the * screening  effect in the region behind the disc. The
series can be summed and integrated, but the result is very complicated.

Now let 2, and therefore ¢, be negative. Then in the previous contour, j is changed,
Yo

since v, is no longer present, but is replaced by a small semicircle round the point —,
now on the upper half of the imaginary axis. The value of the integral becomes

Jﬁg l€6'9 OZS' _ 1. 1
z P2—72-(200) e 27 (n:—{?)
instead of
o= 1

: 27) ' (12“‘7)2)

and
! d.’E . v . m____d_ac__ B g )
VICJAo(gc2—{-—y]2)(x2+§2) - 2 (1—0) V)CL @) <1 o - >

whence

B r r’ 2Ec(” dx P
v=-1I <1+¢P1 (1) +5 Py o)+ ...)+m3 | = s <cz/a2)}<7”Pl (1) =3Py (1) )
(72)

The first portion is now equal to
—L
N r2-et—2rc cos 07

and is the effect of the ordinary ““image "—IE at the image point (-}-¢). The second
portion then appears as the effect, on the same side of the inducing charge, of limitation
wn the radius of the disc.

We have therefore obtained harmonic series suitable for all points of space, and
analysed them for the different regions in a sufficient manner for our purpose, which
is to develop only a formal direct analytical treatment of the problem in all its aspects

of interest.
§19. The Surface Density.

It is a matter of considerable difficulty to determine the surface density—with any
degree of rigour—on the disc, from the general Fourier-Bessel solution.

The series just developed, however, readily lend themselves to a determination of
this quantity on the two sides of the disc.

Let us consider the positive side, and determine the surface density on it corresponding
to the potential V. We have on the axis of z on this side,

- 2Ke (7 da i 2+
VAV = j S(—pZ2
+ ra® Ji a? (x®--c2fa?) o (=) ai

vy = e de G e
0z L

7\7&3 2 (302—1*02/&2) o a?nm‘hz

M 2
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which, as a solution of LaprAcE’S equation (» =< «), yields

l

O vy =2 e [ 2 ) o (D, )

%z ma® )i x? (x2+02/002)1 @k o

D

On the positive side of the dise, where » = p, 1 = 0, the density is o, accordingly,
where

2Fe r’ dx { 3074, He* 1.3 1
drioy == 22| _ 1+ 428 a2y |
A R (a®--c2la?) K @2 ottt 24 k J
__2Ec d pr dx 1
nad de D1 2 (e fa?) " /(1 — o2 [aPa?)

_ 2Kc¢ _Ci j-sin“g o? sin? ¢ dgé—

ma’dply  1-4n%? sin? ¢

after a simple transformation, with « = a/p, n = ¢/a. Thus by a simple process

_ 2E_0l_{ N - " M<92>-Ivcz>l
4o, = e do sin 4 (> 1) tan " |

oo B oA e e <92_+_c3>1
J")—‘_Zﬂ:?c'dp Lsm @ (o5 ) Sin /\/az—kczf

_E 1 1 - p?-c? :
i eV e V) o

\

This result of direct harmonic analysis agrees with KeLvin’s formula obtained by
the method of inversion.

The surface density on the other side—the side on which the charge I lies—is the
sum of this value and the ordinary value on an enfinite plane due to the charge and its
image, by our result of the last section. It does not seem necessary, as the two surface
densities are themselves well known from the work of KeLvin, to prove that our formula
— 2E/= cot™ ¢fa is again obtained by integrating the total charge. We may, in fact,
at this point take leave of the present problem as an illustration of our analysis.

§20. Relation between Aperture and Disc Problems in Electrostatics and Hydrodynamics.

The considerations advanced briefly in this section are not new, being in fact contained,
implicitly at least, in several papers on wave motion by Lord RavimieH. It seems
desirable, however, to give them a compact statement, as no such statement can be
found in any treatise.

Consider two problems, I and IT respectively. I is that of a charge E at P, producing
a potential V in space, in front of an aperture of any shape in an infinite plane earthed
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HARMONICS AND THEIR APPLICATIONS. 85

conductor. Let the effect of the conductor be V’, the whole potential being V-4V,
Then the conditions on the plane are :—

(1) V' is continuous at the boundary of the aperture. I
(2) V-4V’ = 0 over the conductor. -
(3) oV’/on = 0 over the aperture, by symmetry.

Q.
R

o]
.-;!-_
N
[
S

V of course necessarily satisfies (I) and need not be included. .
The second problem is that of a source P’ of fluid, giving
velocity potential ¢ = E/r at an external point, in front of an
obstacle of the same shape and size, and relative position as the V=0
previous aperture, in infinite liquid.
If the effect of the obstacle is ¢, then

(1) ¢’ is continuous (and ¢ necessarily) on the boundary.

(2) ¢/ =0 over the rest of the plane (corresponding to the
conductor), by symmetry.

(3) 8/on (¢-F¢') — O over the aperture.

If we take ¢ =V, ¢/ = —(V-+V'), so that ¢-+¢' = —V’, the %On ( ¢+¢)=0
conditions of one problem satisfy those of the other, and the :
solutions are identical. ~We obtain, in fact, the following )
theorem :— . $=0

" (A)—If a set of charges giving potential V is on one side of a hole
in an infinite conducting wall, the whole potential being V-4V,
then an exactly similar set of sources of fluid giving potential V, similarly situated
with regard to an obstacle corresponding to the aperture, give a whole potential —V’.

This result may be reversed, and stated as follows :—

(B)—If a set of sources on one side of a plane obstacle in an infinite liquid gives
velocity potential ¢, and the whole potential is ¢-l¢’, then an exactly similar and
similarly situated set of charges in front of an infinite plane conductor, with a hole
corresponding to the obstacle, giving a potential ¢, leads to a whole potential —g¢’
when the conductor is at zero potential.

There is also another type of correspondence, exhibited in the next figure.

In the first case, the electric charges, giving alone a potential V, are in front of a plane
limited conductor. If V-V’ is the total potential, (V, V') are continuous on the edge
of the conductor, with

(1) V4-V' = 0 on the conductor.
(2) oV'jon = 0, by symmetry, on the rest of the plane.

In the corresponding hydrodynamical problem, the conductor becomes an aperture
in an infinite plane wall, the charges become sources, and the velocity potentials, —g¢
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86 DR. J. W. NICHOLSON ON OBLATE SPHEROIDAL

due to sources alone, ¢’ due to the barrier—satisfy, besides the conditions of con-
tinuity, '

(1) ¢ =0, by symmetry, over the aperture.

(2) ofon (p+¢') = 0 over the barrier.

I
377; 0 The problems exactly correspond if
p=V, ¢=—(VEV), gty =V
. v+v=o )
P or the equivalents

V=g, V=—(t¢) V+V=—y.

whence the following statements :—

(C)—If a set of charges giving a potential V alone are in

W front of a limited plane conductor connected to earth by a

fine wire, and the whole potential is V--V’, then an exactly

(p+$)-0  similar and similarly situated set of sources of fluid in front of

an aperture, corresponding exactly to the conductor, in an infinite

plane barrier—giving a potential V themselves—give a whole
potential —V’.

Q’IQ'

7

=0

—————— —

(D)—If a set of sources, giving alone a velocity potential ¢ in
infinite liquid, are on one side of a plane infinite barrier with
an aperture, with a whole potential ¢-f-¢’ in the system, the
sources may be replaced by equivalent—exactly similar and
similarly situated—charges giving electric potential ¢, and a conductor at zero
potential exactly similar to the aperture, and similarly situated. The whole potential
in this new system will be —¢’.

At least in this explicit form, the results (A)—(D) do not appear to be widely realised,
for otherwise it is inexplicable that KeLvIN’s solutions for the circular disc under influence
should not have been hitherto translated into corresponding solutions of hydrodynamical
problems of great interest, by writers on that subject. It is, of course, true that,
as left by KuLvin,* the solutions relate only to induced surface density, and the corre-
sponding development of other important physical considerations does not appear
to have been carried out. Our analysis provides a ready means of carrying out some
of these developments, and some attention should be paid to the subject with KrLvin’s
formule as a starting point. We have refrained from the development of the tesseral
spheroidal harmonic analysis in this memoir, mainly because it appears necessary to
work out and consolidate the simpler theory in the first place, and this alone appears
to form a sufficiently large basis for the present memoir. Accordingly, we shall for

* ¢ Papers on Electrostatics and Magnetism,” pp. 178-191.
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HARMONICS AND THEIR APPLICATIONS. 87

certain purposes avoid the use of tesseral harmonics in favour of KrLvin’s surface
density formule as a starting point.

It is to be noticed in connection with (A)—(D) that the restriction of the sources
and charges to one side of the plane is not necessary, though of use in connection with
brevity of statement.

The problem briefly reviewed in the next section, though closely allied to that of
the circular disc under influence, does not appear to have been discussed before.

§21. An Infinite Plane Conductor at Zero Potential contains a Circular Hole, on the Axis
of which s a Charge E. To Find the Distribution on the Conductor.

Theorem (B) of the last section leads to the solution directly from the hydrodynamical
problem discussed previously, in which, corresponding to a source of potential R-?,
the value of ¢ on the positive side of the plane z = 0 was expressed, if 7>a, in the
series
z Lait 1 g2+ g
% (—) WP%H (cos 0) jozv—g_i*:;g/&z
the source being at —c.

The whole potential when 7>a, 7 is positive, in the electrostatic problem under
consideration is therefore

V4V = —Eg¢'

1 2842
: w2 daw
T x N pn+2 P2n+1 ((’05 9) J‘o w2+02/062 g

There is no term in 1/r, from which we deduce at once that the whole charge on the
conductor is —E. :
To find the surface density on the positive side, we at once derive

ﬁ ’ L 24 D o\ a1l 2p121 1242 dap
<8z (Vv )>~“=0 T on %“( Fr@n-2) 23 QT2 (5 1] !)Jouﬂ—i*c?/ooz
_2E9 j‘ dw 1
R S R T

2E i jsin“l% d)\
P o c*p?sin?

2K9 [ ¢ aQ 92+~02>}
T 0 {c\/(cz+92) tan™s '\/<92—a2
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88 DR. J. W. NICHOLSON ON OBLATE SPHEROIDAL

being infinite, as we should expect, at the edge. The deunsity becomes

E | @ ¢ At

4 L ap-1 @ ]
f 2w (et /(P —a?) ()T fan = ¢ AY <P2_a2>f

vanishing with a, as would be expected, for the charge on the completely infinite plane
is all on the negative side, where the point charge is situated.
The quantity Q, of electricity on this side is

»

R

Q= [ P e {(024—92) v, s R e P v (Pir;>}

where the second term may be integrated readily by parts. The final result is

or

=

|

|

=

_E
2

Ec

R

Q, =

On the other side, there is an excess of negative electricity which can be calculated,
as in our previous work, from the charge and its image in the infinite plane without
an aperture. The excess is

2. r 2rede — —Eofy/(a*).

am ) (et
The charge on the left is therefore

Q, = _E_ Ee
' 2 24/ (a?-Fc?)

with a total charge Q,+Q, = «»—E; as already deduced.
We may now take a hydrodynamical problem in illustration of the same principles.

§22. A Source is on the Awis of a Circulur Aperture in an Infinite Plane Wall in Infinite
Liquid.  To Find the Discharge of Liquid through the Aperture.

Let the source give a potential ¢ = II/R, and the wall a potential ¢'. The discharge
through the aperture in unit time is of volume

o~ [z )
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HARMONICS AND THEIR APPLICATIONS. 89

taken over the aperture. The corresponding problem, by (C), is that of a charge E in
front of,—at distance ¢, say,—a circular disc of zero potential. The potential V of the
charge is ¢. Let V' be the potential due to the disc-conductor. Then in the hydro-
dynamical problem,

pt¢ =—V
- oV’
W= U on ds.
This is the mean of the charges on the two sides of the disc, when taken positively,

or half the total charge — (2E/=) cot™ (c/a), multiplied by 4z.
Thus

and

Q= (E cot”‘9>4ﬂ = 4F cot™* &
T a o

is the quantity of liquid crossing the aperture in unit time, while a volume 4zIi leaves
the source. The fraction passing through the aperture is 1/x cot™! ¢/a, which vanishes
with the aperture when @ = 0, with the total flow when ¢ = «, and becomes 1 when
the source is in: the aperture.

§23. Potential of @ Circular Ring wn a Spherovdal Harmonic Series.
The inverse distance formula, with o = ¢/a, becomes

1

= (o (e hop) = -

a v/ 1—p2 402 Fn2 -+ 28un

= (=) @n+1) g, () P, () pu(8) (L <)

0

®

= Z (=) (2n+1) p, (1) P, (#) . (8)  (E>n)

Q0
where

z = anl, o = a/(1—p2) (1+23).

In this formula, from a non-geometrical standpoint, (, 7, v) may be any real quantities
subject. to certain restrictions.

Let now a circular ring with charge K and radius b be situated normally to the axis
of z with its centre at the point z = —c. Its potential on the axis of z is

K
VU (el «/bn R

V =

VOIL. CCXXIV.—A.
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Choose two quantities n and v, independent of the co-ordinates, such that

—Vi? = b2+c

a?

VY = ,

SRl

and v? is less than unity, while »? is positive. The conditions necessary for these
restrictions require a little discussion, and corresponding values of v and 72 are

B 2(12 {£ V(0 +e—a?p+iarc— (b +c*—a?)}

1
n? = By 5 { £ V(0P —a?RP+4aPc-+ (B2 —a?)}.
Only one value of v? can be positive, and from the equation for v?, namely,

a2v4+v2 (b2 _{_02____a2) __02 —

we see, by DEscARTES' rule, that it is between zero and unity in all circumstances.
Thus

v = \/2 V(b2 —a?) - datc? —(biH-ct—a?)

=3

\/Z V(B2 —a?)? Tia? e }i-b2-c*—a?,

and 7 is evidently always real. ~ With these values

K
av/ 1=+ (2¢c/a) vT

Il

v

© Ms

(=) (2n+1) ga (1) P, (V) pa (T) (€ <)

I
Qi ol
< M8

where  and v are constants, and ¢ is a spheroidal co-ordinate.
This is true on the axis of 2z, or u = 1, where y is the other co-ordinate.
The appropriate generalisation to all points of space is

S (=) 2n1) g (1) P () Pa ()20 (0) (€ <)
By @t 0p @) B0 P g,(0) (6> ),

the series being necessarily convergent. These series are new, and it is of interest to


http://rsta.royalsocietypublishing.org/

A A

I ¥

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A A

Vo

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

- HARMONICS AND THEIR APPLICATIONS. 91

note the corollary that their sum has been proved indirectly to be an elliptic integral.
For, in the figure, which requires no explanation, we
see that the potential at a point P of such a ring is

Q P
V:: j21r_E_ ﬁ
0 27 PQ b
PN j"_}}l de ' ¢ c 0 x
o7 {(p—b cos ¢)2+ (b sin ¢)2 - (z4-c)?}*’ Origin
or
E dg
;j {(z-+c)? +b*+p2—2bp cos ¢}*
gj d¢ :
[ BT T B (1) (1 2) 8 oo (N (TP
E g
- 2 | 72 2,2\ /2t 26 2b 2 2\ 13 b
ar ) ‘.l—u 424 (B2 +-c?) [+ -&—HC——&— (1—u?) (1—12%)}* cos qs:]
_ 2K 7o) 2 (be)?
= LT K o ey
=2 (ot a2 T TR L LT G
XK[ {(1—u?) (1—*) (147*) (145)} ]
{2—p2 V2 - - 2uvn -2 (1 —p® T—VA 102 1-RC) P ]

We thus find, in symmetrical form as regards 4 and ¢, or w and v, that it p and v do
not exceed unity, and if 4 and ¢ are real, while

W = 2tV 2uvn 2 3/ { (L) (1—v%) (14-2) (L+22)).
Then, if 4> ¢,
2 (=) (20-H1) g, (1) P, () P () p, (€) = = K [0 o/ {(1—02) (1—7) (1-492) (142 1],

0

and if 4 < ¢,
% (=) (2n+1) 4 () Py () Py (1) pa (1) = = K [0 {(1-4%) (1) (1447) (14+22) )

0

These formule have also been proved otherwise, but an alternative proof is not
- regarded as necessary in this memoir.

When w or v become equal to unity, formulse cmlrea,dy obtained in previous sections
are found as special cases.

§24. Some Analytical Formule.

The specialvcase u=0 is of some importance. The right-hand side becomes an even
function of the other variables, and

02 = 2V 02 {(1—9?) (1472) (1422}
N 2


http://rsta.royalsocietypublishing.org/

A A

I ¥

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A A

Vo

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

92 DR. J. W. NICHOLSON ON OBLATE SPHEROIDAL

With this value, our formulae become

w0

Z (=) (4n4-1) g (1) Pa (v) 0, (8) P, (0) = *—K[w‘l{ Y2 (L) ] (0>0),

0
and a similar one when n <.

The restriction of ¢ to real values can also be removed, though we include no
formal proof, the lines of its construction being fairly obvious. With ¢ = uy,

pzn(C) = (—-:)” P2n (Y)J a‘nd thus
I% (—)" (4n-F1) gop (1) Psy (v) Poy, (v) Py, (0) = ;r% Ko {1—v. 1—y2. 1472},

where now
0? = 2—2—y22 -2 {1—2 . 1—y2. 102}

and o is real if vy is between 1.
Multiplying both sides by a/y*+-2* and integrating between zero and unity,

(401) Gar (1) o (@) Poy ) Poy (0) = 22 | A SR [0 {1t 1t 1)),

with the value of w last written.
The sum of this series is required in the expression of the potential due to a disc at
zero potential in presence of a parallel and coaxial electrified ring.

§25. A Thin Electrified Ring is Coaxial with an Oblate Spheroid. To Find the Charge
Induced on the Spheroid when it vs at Zero Potential.

If the spheroid is
22 + P2 . 1
0022;02 a2 (1"|‘C02) -
and the ring z = —c¢, p = b, with charge F, the potential of the ring alone is
E ®
V=72 (r@nt)g,0) P, () P (e ) 2. (%)

near the surface of the spheroid, where

y=1 \/2. [{(B*Fc2—a2)? +da2e?}t — (b2 —a?)

= 2/2 (@t Hatet P (et —a)l

a
The potential due to the charge on the spheroid, where K, is constant, is

= B () @) g, () P, () P, (1) - Ko (2);

(20

VI

and as V4-V/ = 0 when ¢ = ¢,, for all values of u, K, = —p, (£,)/¢. (%)
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HARMONICS AND THEIR APPLICATIONS. 93

Thus

V= —=2(=)"(2n+1) ¢, (n) P, (") P, (1) g, (©) pu (Co)/ 2 (L)

Q=
o Mg

At a great distance, the first term, or the term in 1/r, is

, E B
V= g (0) g (0 (W (6) = — | 2 g, (20 |,
so that the charge induced on the spheroid is

B = —Bg, (1), (8) = — =2

sin-le cot™

where e is the eccentricity of the meridian section of the spheroid. If the semiaxes are
A and B, with A>B, o2 = A2—B?, and

o E . {(b2_l_02_A2+B2)2 ‘+‘4:C2 (JA2_B2)}% _I_ (b2+02_A2_|_B2)
B = — g, oot N/ { 2 (A1) }

This formula is new. If the ring encircles the spheroid, as in the figure,
¢ =0, and

B <b2—,.zx2+]32>%___~ B . VEE
B = sin“‘ecot AB )T smie ™ <_——b—> ’

a remarkably simple formula.
For the special case of a circular disc, of radius A, B = 0, and ¢ = 1,
so that

p 2B [P AT (4AR) F (52— AY)
B/ = — . cot V { s }
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